Algebraic Geometry Lecture 18 - Categories, schemes, and sheaves

 $\mathsf{Joe}\ \mathsf{Grant}^1$

1. NATURAL EQUIVALENCE

Given two functors $S, T : \mathcal{C} \to \mathcal{D}$, a natural transformation $\tau : S \to T$ is a function assigning to each $c \in ob(\mathcal{C})$ an arrow in \mathcal{D} , $\tau_c : S(c) \to T(c)$, such that for every arrow $f : c \to c'$ in \mathcal{C} , the following diagram commutes.

c	$S(c) \xrightarrow{\tau_c}$	-T(c)
f	S(f)	T(f)
c'	$S(c') \xrightarrow{\tau_{c'}} $	\downarrow · $T(c')$

If every component τ_c of τ is invertible in \mathcal{D} then we say τ is a natural equivalence of functors (or a natural isomorphism). We write $\tau : \mathcal{C} \simeq \mathcal{D}$.

A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if there is a functor $G: \mathcal{D} \to \mathcal{C}$ such that there exist natural transformations $\tau: GF \simeq \mathrm{id}_{\mathcal{C}}$ and $\sigma: FG \simeq \mathrm{id}_{\mathcal{D}}$. (If $GF \simeq \mathrm{id}_{\mathcal{C}}$ and $FG \simeq \mathrm{id}_{\mathcal{D}}$ then we say F is isomorphic to G, but this isn't actually that useful.)

E.g. 1. Take C to be the category of finite sets and take $D = \mathbb{N}$. C and D are naturally equivalent categories.

Opposite categories.

Given a category \mathcal{C} we can define the opposite category \mathcal{C}^{op} by:

- $\operatorname{ob}(\mathcal{C}^{\operatorname{op}}) = \operatorname{ob}(\mathcal{C}),$
- $mor(\mathcal{C}^{op})$ is defined by:

 $\exists f^{\mathrm{op}}: c \to c' \text{ in } \mathcal{C}^{\mathrm{op}} \iff \exists f: c' \to c \text{ in } \mathcal{C}.$

$\mathcal C$	\Leftrightarrow	$\mathcal{C}^{\mathrm{op}}$
$f: a \to b$		$f^{\rm op}:b^{\rm op}\to a^{\rm op}$
$h = g \circ f$		h^{op} = $f^{\mathrm{op}} \circ g^{\mathrm{op}}$
f is monic		f^{op} is epi
$i = \mathrm{id}_a$		$i^{\mathrm{op}} = \mathrm{id}_{a^{\mathrm{op}}}$
f is invertible		$f^{\rm op}$ is invertible.

 $^{^1 \}rm Notes$ typed by Lee Butler based on a lecture given by Joe Grant. Any errors are the responsibility of the typist. Or aliens.

2. Algebraic geometry

Let

 $\mathcal{C}\coloneqq \text{objects are algebraic sets in } \mathbb{A}^n \text{ (over } k) \\ \text{morphisms exist from } S \to T \text{ if and only if } S \subseteq T.$

 $\mathcal{D} \coloneqq$ objects are radical ideals in $k[X_1, \dots, X_n]$ morphisms exist from $I \to J$ if and only if $I \subseteq J$.

Corollary of Nullstellensatz.

There is a natural equivalence $\mathcal{C} \simeq \mathcal{D}^{\mathrm{op}}$.

A lot of important ideas in algebraic geometry have the form $\mathcal{C} \simeq \mathcal{D}^{\mathrm{op}}$.

Affine schemes.

Given a commutative ring with identity, R, an affine scheme is three things:

- (1) A set of points: $X = \operatorname{spec} R \coloneqq \{ \text{ prime ideals of } R \}.$
- (2) A topology on X: Zariski topology, closed sets are V(S) for $S \subseteq R$ where $V(S) = \{P \in X \mid S \subseteq P\}$. (In a previous lecture, Andrew showed us how to think of (S) as a function on spec R. Using this correspondence, $V(S) = \{x \in \text{spec } R \mid f(x) = 0 \forall f \in S\}$.) The open sets are the complements of the closed sets. Dan showed that this forms a topology.

Sets $S \subseteq R$ where $S = \{f\}$ for $f \in R$ are easy to understand. Define the distinguished (basic) open subset of $X = \operatorname{spec} R$ associated to f to be

$$X_f = \operatorname{spec} R \smallsetminus V(f).$$

Remember for a ring R and $f \in R$ we write R_f to denote the localisation of R with respect to f, obtained by adjoining formal inverses. (E.g. if $R = \mathbb{Z}$ and f = 2 then $R_f = \{\frac{a}{2^b} \mid a, b \in \mathbb{Z}\}$.)

We then obtain a 1-1 correspondence

$$\begin{array}{ll} \{ \text{ points of } X_f \} & \stackrel{1-1}{\leftrightarrow} & \{ \text{ prime ideals of } R_f \} \\ P & \mapsto & PR_f \\ \downarrow & & \downarrow \\ R & & R_f \end{array}$$

Exercise: check this is 1-1

The open sets X_f , $f \in R$, form a base for the topology on X; for an arbitrary open set, U, we have

$$U = \operatorname{spec} R \smallsetminus V(S) \qquad S \in R$$
$$= \operatorname{spec} R \smallsetminus \bigcap_{f \in S} V(f)$$
$$= \bigcup_{f \in S} (\operatorname{spec} R)_f.$$

(3) A structure sheaf/sheaf of regular functions.

Recall: Let X be a topological space, then define the category

$$\underline{\operatorname{top}}(X) = \begin{cases} \text{Objects are open sets of } X \\ \text{There is a morphism } f: U \to V \text{ iff } U \subseteq V. \end{cases}$$

Then a presheaf is just a functor $F : \underline{\operatorname{top}}(X) \to \operatorname{Set}^{\operatorname{op}}(\operatorname{or} F : \underline{\operatorname{top}}(X) \to \underline{\operatorname{Comm.Ring}}^{\operatorname{op}})$. Then if we define a functor

 $\mathcal{O}_X : \underline{\mathrm{top}}(B) \to \underline{\mathrm{Comm.Ring}}^{\mathrm{op}}$

where B is the base set of X, by

$$\mathcal{O}_X(\operatorname{spec} R_f) = R_f$$

this can be extended uniquely to a presheaf

$$\mathcal{O}_X : \operatorname{top}(X) \to \operatorname{Comm.Ring}^{\operatorname{op}}$$

which can be sheafified.