
Algebraic Geometry Lecture 18 – Categories, schemes, and sheaves

Joe Grant1

1. Natural equivalence

Given two functors S,T ∶ C → D, a natural transformation τ ∶ S → T is a function
assigning to each c ∈ ob(C) an arrow in D, τc ∶ S(c) → T (c), such that for every
arrow f ∶ c→ c′ in C, the following diagram commutes.

c S(c) τc - T (c)

c′

f

?
S(c′)

S(f)
? τc′- T (c′)

T (f)
?

If every component τc of τ is invertible in D then we say τ is a natural equivalence
of functors (or a natural isomorphism). We write τ ∶ C ≃ D.

A functor F ∶ C → D is an equivalence of categories if there is a functor G ∶ D → C
such that there exist natural transformations τ ∶ GF ≃ idC and σ ∶ FG ≃ idD. (If
GF ≃ idC and FG ≃ idD then we say F is isomorphic to G, but this isn’t actually
that useful.)

E.g. 1. Take C to be the category of finite sets and take D = N. C and D are
naturally equivalent categories.

Opposite categories.

Given a category C we can define the opposite category Cop by:

● ob(Cop) = ob(C),
● mor(Cop) is defined by:

∃ fop ∶ c→ c′ in Cop ⇔ ∃ f ∶ c′ → c in C.

C ⇔ Cop
f ∶ a→ b fop ∶ bop → aop

h = g ○ f hop = fop ○ gop

f is monic fop is epi
i = ida iop = idaop

f is invertible fop is invertible.

1Notes typed by Lee Butler based on a lecture given by Joe Grant. Any errors are the respon-
sibility of the typist. Or aliens.
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2. Algebraic geometry

Let

C ∶= objects are algebraic sets in An (over k)
morphisms exist from S → T if and only if S ⊆ T.

D ∶= objects are radical ideals in k[X1, . . . ,Xn]
morphisms exist from I → J if and only if I ⊆ J.

Corollary of Nullstellensatz.

There is a natural equivalence C ≃ Dop.

A lot of important ideas in algebraic geometry have the form C ≃ Dop.

Affine schemes.

Given a commutative ring with identity, R, an affine scheme is three things:

(1) A set of points: X = specR ∶= { prime ideals of R}.
(2) A topology on X: Zariski topology, closed sets are V (S) for S ⊆ R where

V (S) = {P ∈ X ∣ S ⊆ P}. (In a previous lecture, Andrew showed us how to
think of (S) as a function on specR. Using this correspondence, V (S) =
{x ∈ specR ∣ f(x) = 0 ∀ f ∈ S}.) The open sets are the complements of the
closed sets. Dan showed that this forms a topology.

Sets S ⊆ R where S = {f} for f ∈ R are easy to understand. Define the
distinguished (basic) open subset of X = specR associated to f to be

Xf = specR ∖ V (f).
Remember for a ring R and f ∈ R we write Rf to denote the localisation

of R with respect to f , obtained by adjoining formal inverses. (E.g. if R = Z
and f = 2 then Rf = { a

2b ∣ a, b ∈ Z}.)
We then obtain a 1 − 1 correspondence

{points of Xf}
1−1↔ {prime ideals of Rf}

P ↦ PRf

; ;
R Rf

Exercise: check this is 1 − 1
The open sets Xf , f ∈ R, form a base for the topology on X; for an

arbitrary open set, U , we have

U = specR ∖ V (S) S ∈ R
= specR ∖ ⋂

f∈S

V (f)

= ⋃
f∈S

(specR)f .

(3) A structure sheaf/sheaf of regular functions.
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Recall: Let X be a topological space, then define the category

top(X) =
⎧⎪⎪⎨⎪⎪⎩

Objects are open sets of X
There is a morphism f ∶ U → V iff U ⊆ V.

Then a presheaf is just a functor F ∶ top(X)→ Setop (or F ∶ top(X)→ Comm.Ringop).
Then if we define a functor

OX ∶ top(B)→ Comm.Ringop

where B is the base set of X, by

OX(specRf) = Rf

this can be extended uniquely to a presheaf

OX ∶ top(X)→ Comm.Ringop

which can be sheafified.


